
2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX)

Visual Quality Assessment for Interpolated
Slow-motion Videos based on a Novel Database

Hui Men1,Vlad Hosu1, Hanhe Lin1, Andrés Bruhn2, Dietmar Saupe1

1Department of Computer and Information Science, University of Konstanz, Germany
2Institute for Visualization and Interactive Systems, University of Stuttgart, Germany

Email: {hui.3.men, vlad.hosu, hanhe.lin, dietmar.saupe}@uni-konstanz.de, bruhn@vis.uni-stuttgart.de

Abstract—Professional video editing tools can generate slow-
motion video by interpolating frames from video recorded at a
standard frame rate. Thereby the perceptual quality of such in-
terpolated slow-motion videos strongly depends on the underlying
interpolation techniques. We built a novel benchmark database
that is specifically tailored for interpolated slow-motion videos
(KoSMo-1k). It consists of 1,350 interpolated video sequences,
from 30 different content sources, along with their subjective
quality ratings from up to ten subjective comparisons per video
pair. Moreover, we evaluated the performance of twelve exist-
ing full-reference (FR) image/video quality assessment (I/VQA)
methods on the benchmark. In this way, we are able to show that
specifically tailored quality assessment methods for interpolated
slow-motion videos are needed, since the evaluated methods –
despite their good performance on real-time video databases – do
not give satisfying results when it comes to frame interpolation.

Index Terms—visual quality assessment, slow motion, optical
flow, frame interpolation

I. INTRODUCTION

Slow-motion videos have become popular in recent years.
However, not all cameras support the required frame rates
at high resolutions. Video editing software, including pro-
fessional ones such as “Adobe Premiere Pro CC”™, pro-
vide methods to generate slow-motion videos by synthe-
sizing frames, starting from standard frame-rates. Thereby,
the quality of the generated videos depends on the applied
interpolation techniques which typically fill-in image content
along the path of motion. The required motion field in the form
of the so-called optical flow can be derived in several ways.
Widely used approaches include block matching methods [1],
frequency-based techniques [2], variational methods [3], and
convolutional neural networks [4].

Computation of optical flow is a research topic on its own,
and there are several benchmark datasets to evaluate and
rank competing algorithms. Only one of these benchmarks
also allows comparing the quality of interpolated frames:
the Middlebury benchmark [5]. In this benchmark, the per-
formance of motion estimation is evaluated by angular and
endpoint errors between the estimated flow and its ground-
truth. Besides, it also provides a simple objective evaluation of
the corresponding motion-compensated interpolation results,
given by the root mean squared error (RMSE) and the gradient
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normalized RMSE between the interpolated frame and the
ground-truth one. However, since the Middelebury benchmark
primarily aims at evaluating optical flow methods, it falls short
regarding two aspects when it comes to frame interpolation.
First, it only offers a small number of image triplets for
interpolation, each consisting of a frame pair and the in-
between ground-truth. Second, it uses objective RMSE metrics
for evaluation that are known to be perceptually inaccurate
[6]. For frame interpolation, this was confirmed by subjective
studies on the Middlebury interpolation benchmark in [7]
and [8]. Thus, simple objective measures are insufficient
for evaluating interpolated frames, and this problem may be
even more prevalent for interpolated video sequences. Due
to the temporal variations contained in a video, inspecting a
video rather than observing its constituent frames can result
in different perceptual quality scores. Hence, we propose a
benchmark specifically for interpolated slow-motion videos
along with corresponding subjective quality scores. We also
consider suitable objective evaluation metrics for comparison.

We provide 30 videos at 120 frames per second (FPS) using
a high-speed camera. The whole set of videos is diverse in both
content and motion types. For each original (pristine) video,
we generate several slow-motion versions by interpolating sub-
sampled frames. For this purpose, we use the same interpo-
lation technique as adopted in the Middlebury benchmark [9]
using ten optical flow methods. Playing the interpolated videos
at 30 FPS makes them four times slower than their original
speed. In total, our database contains 1,350 slow-motion video
versions generated from the 30 source videos.

Lab studies for subjective quality assessment are well es-
tablished and considered as a reliable methodology. However,
the number of videos that can be assessed in the lab is limited
due to the required time and cost. As an alternative, crowd-
sourcing studies are less expensive, and sufficiently reliable if
the results are properly post-processed by removing outliers
[10]. Therefore, we collect subjective scores for the slow-
motion videos by crowdsourcing. Instead of using an absolute
category ratings (ACR) scale, which is adopted by most of
the video quality assessment (VQA) databases, we perform
paired comparisons (PC) since it is a highly discriminating
evaluation procedure. Moreover, instead of naively comparing
the full set of video pairs, we use a hybrid active sampling
procedure [11], which further improves the efficiency of our
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TABLE I
VQA DATABASES

Database Year # SRC? # DST† FPS Method
EPFL-PoliMI [15] 2009 12 144 25/30 ACR
LIVE [16] 2010 10 150 25/50 ACR
IVP [17] 2011 10 128 25 ACR
CSIQ [18] 2014 12 216 24-60 ACR
CVD2014 [19] 2014 - 234 10-31 ACR
MCL-V [20] 2015 12 96 24-30 PC
NFLX [21] 2016 9 70 24-30 ACR
KoNViD-1k [13] 2017 - 1,200 30/60 ACR
FlickrVid-150k [14] 2019 - 153,841 24-120 ACR
KoSMo-1k [Ours] 2020 30 1,350 120∗ PC
? source video
† distorted video
∗ 120 FPS in real-time. and 30 FPS for playback.

quality assessment.
For a slow-motion video benchmark, obtaining subjective

ratings for each submitted video is not practical; thus, an ob-
jective quality assessment method is needed. Since the ground-
truth videos are available, we consider four full-reference (FR)
VQA and eight FR image quality assessment (IQA) methods.

Our contributions can be summarized as follows:
1) We create a VQA database, KoSMo-1k, consisting of 1,350

slow-motion videos generated by ten optical flow methods.
2) We provide subjective ratings for the slow-motion videos

obtained via paired comparison with active sampling. In
total, 18,626 subjective ratings were collected.

3) We evaluate the performance of twelve I/VQA methods on
the generated slow-motion videos, accordingly.

4) The dataset with ratings is provided in [12].

II. RELATED WORK

Several VQA databases are available, see Table I. The sizes
of these databases range from 70 to 153,841 videos. Most of
these databases contain videos degraded by artificially gener-
ating distortions, in particular, compression artifacts or trans-
mission distortions. Videos in KoNViD-1k [13] and FlickrVid-
150k [14] were collected and sampled from authentic videos
of different qualities. All of these databases contain only real-
time videos. None of them provides slow-motion videos or
distorted videos generated by frame interpolation. Regarding
subjective quality scores, except for MCL-V, which adopted
PC to derive subjective scores, all other databases list mean
opinion scores from ACR.

Regarding the evaluation of the interpolation quality, both
the Middlebury benchmark and the other datasets adopt stan-
dard metrics (e.g., MSE, PSNR, and SSIM [6]) to measure
the differences between the interpolated image and the ground-
truth in-between one. However, these metrics have been judged
to be insufficient for evaluating interpolated frames by subjec-
tive studies on the Middlebury benchmark [7] [8].

Hybrid-MST [11] is a hybrid active sampling method aim-
ing at aggregating scale values from a sparse PC test. After
the initial round of a PC test which is randomly sampled,
it actively selects the pairs for the next round based on the
expected information gain (EIG) from the previous round.

Fig. 1. Example frames from the videos in the database, sorted ac-
cording to ascending bitrates. From the upper left to the lower right:
482 kbps, 598 kbps, 790 kbps, 2.14 Mbps, 2.74 Mbps, 4.01 Mbps, 4.12 Mbps,
4.74 Mbps, 5.19 Mbps and 6.50 Mbps.

The pairs for the next round are indicated by the edges of
the minimum spanning tree, the nodes of which are given by
the videos and the edges are weighted by the inverses of the
corresponding EIGs. This sampling procedure iterates until the
cost reaches the test budget.

III. SLOW MOTION SOURCE VIDEOS

A. General Information

Our 30 source videos were captured using a GoPro HERO7
camera at 120 FPS in MPEG-4 format (encoded with the
H.265 codec). The bitrates of these source videos vary from
30 Mbps to 60 Mbps. In order to allow for subjective com-
parison of two slow-motion videos side-by-side, we manu-
ally scaled the videos from HD resolution of 1920 × 1440
to roughly half the size and cropped them to 480 × 540
pixels, according to content, see Fig. 3. Furthermore, since
the interpolated videos are played four times slower than their
original speed, i.e., at 30 FPS, we cut the videos into 2-second
segments such that the slow-motion videos are 8 seconds long.
The recommended video duration for subjective studies is 8–
10 seconds [22]. The processed videos were stored in MPEG-4
format, encoded using the H.264 codec.

B. Video Diversity

The source videos in our database are diverse in respect of
content and motion types.

1) Content Diversity: The source videos include standard
scenes such as those depicting traffic, birds, landscapes, but
also scenes designed to be more challenging for optical flow
methods. It may be more difficult to compute flow fields
for waves, clouds, sand, sparkling water (see Fig. 1). The
dynamics of such scenes go beyond the usual assumption of
“objects against a background”.

2) Motion Diversity: The source videos are diverse in
motion types as well. As shown in Table II, we classified
the motion types into two main classes. One is object motion,
meaning that the camera is relatively fixed, while the object
is moving. In this class, the videos can be further grouped
into three sub-classes: (i) normal speed (objects in the scene
are moving at normal speed), (ii) fast speed (objects in the
scene are moving fast, namely with large displacements, such
as flying seagulls and fast-moving vehicles), and (iii) special
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TABLE II
MOTION TYPES OF SOURCE VIDEOS IN THE DATABASE

Motion Types of Source Videos # Videos

Object Motion
Normal Speed 6
Fast Speed 5
Special 5

Camera Motion

Zooming 3
Panning 3
Tilting 2
Dolly 4
Trucking 3

TABLE III
SLOW-MOTION VIDEOS WITH INTERPOLATED VERSIONS

Up To? Interp.7 Interp.15 Interp.31 Interp.63
# Source Videos 7 9 6 8
# Slow-motion videos per source 30 40 50 60
# Slow-motion videos in total 210 360 300 480

? Maximum number of frames interpolated for a source video. For example, Interp.31
indicates that from each source video slow-motion versions with 1, 3, 7, 15, and 31
interpolated frames between corresponding reference frames are included.

content (the scene contains special contents, e.g., clouds,
sparkling water). The other main class is camera motion,
which can also be further subdivided according to the motion
types [23]: zooming, panning, tilting, dolly and trucking.

IV. SLOW-MOTION VIDEO GENERATION

Before designing the interpolation strategy for generat-
ing slow-motion videos, we checked the quality differences
between I-frames (which are stored completely) and other
frames, i.e., non-I-frames (which are predicted from I-frames)
by visually inspecting all of the frames as well as using the
state-of-the-art no-reference VQA method CORNIA [24] to
predict their quality scores. Both of these ways confirmed that
there is no significant quality difference between I-frames and
non-I-frames, thus the reference frames for the interpolation
can be freely chosen.

We produced slow-motion videos from the source videos
by applying ten optical flow methods with the parameters
recommended by the corresponding implementations, each
followed by frame interpolation from the corresponding optical
flow field, using the interpolation method that had also been
applied in the Middlebury benchmark, with code from [9].
See Table V for the percentile rankings of the corresponding
performances in the Middlebury benchmark. We interpolated
1, 3, 7, 15, 31, and 63 frames between every other, 4th,
8th, 16th, 32nd, and 64th frame (see Fig. 2), resulting in 6
versions of slow-motion videos, denoted as Interp-1, Interp-3,
Interp-7, Interp-15, Interp-31, and Interp-63). However, for
some of the source videos, interpolating too many frames
resulted in slow-motion videos that are severely degraded.
Therefore, after visual inspection, we discarded the ones that
are obviously unacceptable for viewing. This way we obtained
1,350 interpolated slow-motion videos for our database, see
Table III. We treated the slow-motion videos generated from
the same source video as one set. Overall there are 30 sets,
each with a number of slow-motion videos according to the
maximum number of frames to be interpolated.

Fig. 2. Interpolation Strategy.

TABLE IV
Round 1 Round 2-7 Round 8

# Pairs 3,717 4,392 1,036
# Judgements per pair 2 2 4
# Collected Judgements 16,218 4,144
# Reliable Judgements 15,052 3,574
# Reliable Judgements in total 18,626

V. SUBJECTIVE STUDY OF SLOW-MOTION VIDEOS

A. Study Design

In order to scale the videos in each of the 30 sets according
to visual quality, we collected paired comparisons (Fig. 3)
using the Amazon Mechanical Turk (AMT) [25] platform. We
applied the active sampling strategy (ASPC) to each of the
sets in eight rounds, to avoid having to compare each video
in a set to all the others. In the first round of ASPC, we
randomly sampled pairs by choosing the edges of a random
sparse graph with nodes corresponding to videos and a vertex
degree of 6. Thus, each video is randomly compared (twice)
to 6 other videos of the same set. For all sets together, this
resulted in 3,717 pairs with 7,434 forced choices, see Table IV.
In rounds 2 to 7, we applied the minimal spanning tree strategy
of ASPC, again collecting two votes per pair. Then, we filtered
outliers and re-collected the ratings for the removed pairs in
the 8th round (4 votes for each pair). For all 8 rounds of
ASPC, 8,109 pairs of videos were compared in total. After
removing the outliers also for this last round, 18,626 reliable
subjective ratings remained.

Fig. 3. Interface of crowdsourcing experiment. By clicking the play button,
a pair of videos will be played simultaneously. Turkers (i.e., crowd workers
working via AMT) were asked to identify and select the video with better
quality for each video pair (forced binary choice). They can playback the pair
of videos several times as they want.
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TABLE V
PERCENTILE RANKINGS OF OPTICAL FLOW METHODS

Optical Flow Method (Abbrev.) Middlebury StudyMB 2.0 KoSMo-1k
[5] [8]

Classic+NL (ClassicNL) [26] 45% 21% 1
OAR-Flow (OAR) [27] – – 2
Black & Anandan (BA) [28] [29] 48% 26% 3
BeyondPixles (Beyond) [30] – – 4
Dual-TVL1 (DualTVL1) [31] – – 5
FFV1MT [32] 6% 24% 6
LKpyramid (LK) [33] 2% 6% 7
2D-CLG (CLG) [34] [35] 38% 42% 8
Brox et al. (Brox) [36] [37] 75% 88% 9
Horn & Schunck (HS) [38] 9% 13% 10

“–” denotes the method is not existing in the benchmark.

B. Quality Assurance

Quality control consisted of a session of thorough instruc-
tions at the beginning of the crowdsourcing tasks and later on
of a step that filters outlier votes followed by their replacement
by a renewed collection of PCs. During the outlier removal,
individual votes were removed, based on the disagreement
with the currently reconstructed score values of the presented
stimuli. A vote of a crowd worker was regarded as an outlier
if the worker assigned a lower score to the video with
better quality and the scores of the two stimuli in the paired
comparison differed by at least 0.2, which is approximatly one
third of the range of the quality scale.

C. Result

Based on Thurstone’s Case V model [39] with maximum
likelihood estimation (code provided by [11]), absolute quality
scale values for each slow-motion video were reconstructed
using the judgments collected. In our study, there is no cross-
content comparison, so the reconstructions in the 30 sets are
independent of each other. To align the scores in all sets
together, we introduced two virtual anchors per set. One stands
for a slow-motion video of the worst quality among all, and
the other is like the ground-truth, i.e., its quality is the best
overall. After the reconstruction of the scores for each of the
augmented sets, we linearly re-scaled the scale values to the
interval [0, 1], so that the scale values of the two anchors
became 0 and 1.1

From these scale values we then computed an average
quality for each optical flow method interpolating a certain
number of frames (denoted as method-number2). Thereby the
average was taken over all such interpolated sequences in
all 30 sets. Fig. 4 shows these qualities depending on the
number of interpolated frames for the ten considered optical
flow methods. The best three performances are DualTVL1-
1, ClassicNL-1, and ClassicNL-3; see Interp-1 and Interp-3.
Fig. 5 shows the qualities depending on motion types. It can be
seen that some methods performed especially well for camera
motion (e.g., OAR and CLG), while some failed for most of
the motion types (e.g., HS and LK).

Moreover, Table V lists the overall performance, yielded
by taking the average over 30 videos of the considered optical

1All reconstructed quality values, accompanied by their corresponding
rankings will be shown in tables on our website.

2E.g., CLG-3 denotes “optical flow method CLG interpolates 3 frames”.

Fig. 4. Average scores over 30 videos.

Fig. 5. Scores averaged over all interpolated videos of each motion type.

methods for KoSMo-1k. Additionally, interpolation results for
the Middlebury benchmark and the StudyMB 2.0 are listed.
While the Middlebury results rely on the root-mean-square
error, the StudyMB 2.0 uses the perceptual quality of interpo-
lated single frames. One can observe notable differences in the
rankings when comparing the three cases. For instance, Brox
ranked best for both Middlebury and the StudyMB 2.0, and
only ninth for KoSMo-1k. In contrast, ClassicNL performed
best on average in KoSMo-1k, but gave rather inferior results
for Middlebury and the StudyMB 2.0.

D. Discussion

As shown in Fig. 4, for two optical flow methods, the perfor-
mance of interpolating three frames is better than interpolating
a single frame (Beyond and OAR). While this appears to be
counter-intuitive at first glance, it may be explained by the
generally smoother interpolation results of those methods –
which can be attributed to the recommended parameter settings
in the corresponding implementations. Smoother interpolation
results, in turn, may lead to slight flickering if alternated with
the somewhat sharper reference frames. Not surprisingly, this
effect is less pronounced, if more frames are interpolated.

In Fig. 4, there is a clear difference between two groups of
methods: 1. the upper bundle, consisting of six methods that
are generally better performing BA, Beyond, ClassicNL, OAR,
DualTVL1, and FFV1MT; 2. the lower bundle, consisting
of the other four methods that perform worse on average
especially in the mid-range interpolation scenarios (Interp-
3 to Interp-31), Brox, CLG, HS, and LK. The reason for
the poor performance of HS and LK is that those classical
methods, which have been proposed almost 40 years ago, are
based on simpler assumptions that have an impact on both
the accuracy and the robustness of the estimation. Regarding
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TABLE VI
SROCC OF FR-I/VQA METHODS ON DIFFERENT DATASETS

FR-VQA? VQEG [40] NFLX [21] LIVE (VQA) [16] KoSMo-1k
MOVIE [41] 0.858 – – 0.427
ST-MAD [42] – – 0.824 0.443
ViS3 [43] – – 0.816 0.450
VMAF [44] – 0.940 – 0.515

FR-IQA† LIVE (IQA) [45] StudyMB 2.0 [8] KoSMo-1k
MAD [46] 0.944 0.621 0.365
PSNR [47] 0.876 0.682 0.409
GMSD [47] 0.960 0.663 0.469
VSI [48] 0.952 0.658 0.472
FSIM [49] 0.963 0.660 0.476
VIF [50] 0.964 0.422 0.476
MS-SSIM [51] 0.952 0.664 0.478
SSIM [6] 0.948 0.670 0.482
? For FR-VQA: SROCC for all datasets but KoSMo-1k were taken from

their references shown in the first column.
† For FR-IQA: SROCC for LIVE-IQA were taken from their references

shown in the first column; results for StudyMB 2.0 were taken from [8].

the other two methods in the lower bundle, Brox and CLG,
we found that for the videos with large displacements, where
most of the other methods had problems, they were able to
achieve visually acceptable results. However, for the videos
with normal motion, they performed much worse than other
methods. Also, this could be an effect of the recommended
default settings of the corresponding implementations.

VI. EVALUATION OF FR-I/VQA

Lastly, we investigated the performance of objective FR-
I/VQA methods to predict the subjective qualities of inter-
polated slow-motion videos in KoSMo-1k. For this purpose,
we considered twelve FR-I/VQA methods, including four for
VQA (MOVIE, VMAF, ST-MAD, and ViS3) and eight for
IQA (PSNR, GMSD, MS-SSIM, SSIM, VIF, MAD, FSIM,
and VSI). Regarding the eight IQA methods, we applied them
for each frame and took the mean as the final quality score.

Table VI shows the Spearman’s rank-order correlation coef-
ficient (SROCC) between the predictions of these FR-I/VQA
methods on KoSMo-1k and several other datasets. It can be
seen that all of these methods performed quite poorly on
KoSMo-1k, regardless of how well they performed on other
datasets or the Middlebury benchmark. More specifically, ST-
MAD and ViS3, which are VQA methods, performed even
worse than two IQA methods (i.e., PSNR and MAD). This
means that some of the FR-VQA methods could not even pre-
dict the quality of interpolated slow-motion videos as well as
frame-based FR-IQA methods. This clearly shows that existing
quality assessment methods are not suitable for measuring the
visual quality of interpolated slow-motion videos. Evidently,
novel specifically tailored VQA methods are needed.

VII. LIMITATIONS

One limitation is the small frame size of the side-by-side
videos, much smaller than during normal video consumption.
Moreover, we captured the videos with a GoPro camera with
a wide-angle lens. To reduce the wide-angle distortions we
cropped the videos, however, in some of them there are still
some wide-angle artifacts visible.

One open question that concerns the comparison of inter-
polation results in Fig. 4 and Table V is the selection of
appropriate parameter settings for the optical flow methods.
In particular, since there is no suitable measure to assess
the quality of the interpolated videos, there is no obvious
choice for a loss function that could be used to adjust
those parameters. Hence, we resorted to those settings that
are recommended in the respective implementations, which
in most cases coincide with the optimal parameters for the
Middlebury benchmark. But even in this case, the optimality of
the parameters refers only to the quality of the flow and not the
quality of the interpolated videos. Having a novel specifically
tailored VQA method would resolve this problem. Then the
parameters could be adjusted such that the interpolated videos
provide the optimal visual experience.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we made three contributions for visual quality
assessment of interpolated slow motion videos. First, we
provided a novel bench-mark database specifically tailored
for this task. Besides a large number of slow-motion videos
interpolated with different optical flow methods, our database
also offers a large variety of content and motion types.
Secondly, based on this database, we provided and evaluated
subjective ratings for the visual quality of the interpolated
videos. Our study depicts that there are large differences
in the perceptual quality of the interpolated videos gener-
ated by different optical flow methods. Finally, we evaluated
the performances of current existing FR-I/VQA methods on
such interpolated slow-motion videos. The poor correlations
between their predictions and our subjective ratings reveal
the weakness of FR-I/VQA methods when applied to slow-
motion videos, generated from frame interpolation methods.
In this context, some of the FR-VQA methods performed
even worse than FR-IQA methods. This illustrates the need for
developing an FR-VQA method that is specifically designed
for interpolated slow-motion videos.

Hence, as future work, we suggest designing an FR-VQA
model for the quality prediction of interpolated slow-motion
videos. To this end, the 30 sets of slow-motion videos, along
with their subjective ratings in KoSMo-1k, can be subdivided
into subsets for training, validation, and testing which allows
us to apply cross-validation using the leave-one-out strategy.
Such a FR-VQA model would not only enable us to adjust
the parameters of the optical flow methods to achieve optimal
performance. It would also allow us to rank optical flow
methods regarding their perceptual interpolation quality.
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