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Abstract—Image quality has been studied almost exclusively
as a global image property. It is common practice for IQA
databases and metrics to quantify this abstract concept with
a single number per image. We propose an approach to blind
IQA based on a convolutional neural network (patchnet) that
was trained on a novel set of 32,000 individually annotated
patches of 64×64 pixel. We use this model to generate spatially
small local quality maps of images taken from KonIQ-10k, a
large and diverse in-the-wild database of authentically distorted
images. We show that our local quality indicator correlates
well with global MOS, going beyond the predictive ability
of quality related attributes such as sharpness. Averaging of
patchnet predictions already outperforms classical approaches to
global MOS prediction that were trained to include global image
features. We additionally experiment with a generic second-stage
aggregation CNN to estimate mean opinion scores. Our latter
model performs comparable to the state of the art with a PLCC
of 0.81 on KonIQ-10k.

I. INTRODUCTION

Digital images pass through an intricate processing pipeline
from being captured to being presented to a human observer.
Flaws and limitations of the endpoint devices and performance
trade-offs in the algorithms used for transport and storage
(e.g. compression) may result in a reduced perceived visual
quality. Accurate and generally valid objective image quality
assessment (IQA) methods have numerous applications in
the multimedia domain since manual inspection is costly
and time-consuming. For example, media outlets and graphic
design companies can simplify their search for usable source
materials by filtering for content of sufficient quality, service
providers can measure the performance of their products or
mitigate ongoing problems with respect to content quality, etc.

Subjective studies are known to yield reliable opinions for
both artificially distorted image datasets [1], [2] where the
severity of particular degradations is known as well as for
in-the-wild collections of images [3], [4] with authentic and
unknown mixtures of distortions. The common benchmark for
objective quality measures is their ability to estimate mean
opinion scores (MOS) acquired from a sufficient large number
of observers [5].

It is possible to distinguish objective IQA methods by
their requirements regarding additional information besides the
image under assessment. Full-reference methods, such as the
PSNR, need access to a pristine original. Reduced-reference
algorithms only require partial information, e.g. the type of
the predominant distortion in the given image. No-reference
image quality assessment (NR-IQA) methods do not require
additional information.

In this paper, we introduce an approach to local NR-IQA
that applies to the wide range of distortion present on images
in-the-wild. Quality is generally considered as a property
of the entire image, evaluated via the MOS of a group of
observers. This is the point of view that previous IQA methods
have taken. Some works consider that each part of the image
contributes independently [6] to the overall quality score,
whereas others assign different weights [7] to build a better
global quality estimate.

We hypothesize that quality can be understood as both a
local property of an image patch of a sufficiently large size as
well as a property of an entire image. In our IQA approach,
we intend to rely on the assessed quality of individual patches.
To this end, we created a novel dataset of manually quality-
annotated RGB patches sampled from KonIQ-10k [4]. We
build a local patch-level quality prediction CNN architecture
and train it on our patch dataset. As far as we are aware of,
we are the first to consider to directly predict the quality of
individual patches, without making any indirect assumptions
about the correspondence between the global and local quality
scores.

We expect our predictor to be more representative of the
low level technical aspects of quality, without having been
influenced by content or other higher level factors, such as
aesthetics or image composition. For comparison reasons,
we also include two approaches to global MOS prediction:
Patchnet is used in a sliding-window fashion to create spatially
small quality maps of authentically distorted images taken
from KonIQ-10k.

The average value of these maps already correlates highly
with the global MOS score. Furthermore, we augment our
quality maps with two other local low-level indicators, namely
the FISH sharpness metric [8] and brightness information in
the form of gray-scale version of the original input. We then
study the performance of a generic feature aggregator based
on a DenseNet-169 CNN [9].

Our results show that the correlations between the mean
values of patchnet quality maps and global MOS values
on KonIQ-10k are already comparable to the best-performing
global statistical methods that were fine-tuned on the respec-
tive dataset. Aggregation of all three of our spatially small
feature maps by a second-stage CNN outperforms all classical
methods and the naive patch-based deep learning methods.
We expected this approach to be falling short of the global
performance of models that traded incorporating additional
information (e.g. content) for the ability to predict local quality



on small areas.

II. RELATED WORK

A popular approach in traditional NR-IQA utilizes Natural
Scene Statistics (NSS) to estimate the perceptual quality of
images. The NSS assumption is that distortions in natural
images can be measured by deviations of feature distributions
between those observed in distorted images and those on
pristine images. NSS is used in multiple works, for instance,
Moorthy et al. [10] extract a large number of wavelet coef-
ficients and utilize a two staged support vector classification
and regression model to predict quality. Saad et al. [11] fit
a generalized Gaussian model on block-wise extracted DCT
coefficients and predict quality using a Bayesian model applied
to the estimated distribution parameters. Further NSS based
methods assess contrast distortions [12] and involve aesthetics
measures [13] to augment existing NR-IQA methods. Recent
advances in machine learning led to the proposal of fully
data-driven IQA regressors. One of the cornerstone imple-
mentations was proposed by Kang et. al [14]. It consists
of only one convolutional layer with 50 feature maps that
are subsequently min and max pooled and fed into a fully-
connected network for quality score estimation. Bosse et. al
[6] use a streamlined neural network with 10 convolutional
layers and a fully-connected predictor at the end. They train
their network to estimate MOS values on 32×32 pixel RGB
patches sampled at random locations of images taken from
the LIVE dataset. Prediction of global scores is implemented
by averaging a sufficient number of local scores. Although
simple, their proposed aggregation strategy leaves room for
improvement. For instance, the overall quality distribution
of an image may correlate with the aesthetic sentiment, e.g.
image composition following the golden ratio. Bianco et. al
[15] report on multiple experiments with different pre-trained
network architectures working directly on large image patches.
DeepBIQ, their best performing method, uses a CNN to extract
local features that are fed into a support vector regressor. The
state of the art for global MOS prediction, as set by traditional
methods, has been substantially enhanced by deep-learning
methods on all commonly used quality benchmark databases
such as LIVE [1], LIVE in the Wild [3] or TID2013 [16].

III. APPROACH

The implicit assumption of a uniform quality distribution
introduced by measuring quality with a single MOS value
per image does not necessarily hold in natural images. For
example, background areas are often blurred or underexposed
in comparison to the object in focus. Naive training of a patch-
based IQA model on such a database is therefore prone to
difficulties in capturing quality-indicative areas of an image.

We propose a new method to create training data in an
attempt to attenuate the issues of varying quality in natural im-
ages. To estimate global MOS more precisely while avoiding
to rely on higher-level image content, we augment the quality
maps generated by grid-wise application of patchnet with
maps generated by applying the FISH sharpness metric in the

same spatial fashion. As a third layer, we add a downsized
gray-scale version of the original input image to convey
brightness information to the global predictor.

IV. PATCHNET

The patchnet model takes RGB images of a fixed size of
64×64 pixel as an input and produces a quality score in [0, 1].
The neural network has seven convolutional layers followed
by three fully connected layers. Its architecture is depicted in
Fig 1. Our contribution lies not so much in the CNN itself,
but in the novel way of creating training data and applying it
for IQA.

A. Database Creation

We randomly sampled 500 pictures from KonIQ-10k as
a basis for patch selection. Those were excluded from the
remaining dataset to guarantee that MOS estimation experi-
ments are never carried out on images which patchnet was
partially trained on. From each of the selected images, we
sampled 64 patches at random locations. This set of 32, 000
patches was manually annotated in an attempt to flag patches
that were not indicative of being sampled from a high quality
image.

Instead of having the patches rated on an absolute category
rating (ACR) scale as usually done for entire images, we
simplified the task to a binary classification. In a total of
three iterations, a student labeled the data in a controlled lab
environment. First, patches were presented one at a time and
received an initial rating. In the second and third iterations,
the patches were shown in a grid. We displayed only patches
of either high or low quality at a time to provide context about
the other patches’ quality in the same set. This was intended to
allow amending the dataset in a consistent way, as each patch
could be directly compared to a large number of elements
from the same set and relabeled in case the opposing set was
a contextually more reasonable choice.

Examples of patches marked as being indicative of high
quality are given in Fig. 2, patches marked as being not
indicative of high quality are presented in Fig. 3.

B. Training the Network

Each of the 500 source images, that together yielded the
32,000 annotated patches, has an ACR derived mean opinion
score mos(I), whereas each patch p has been labeled as either
low or high quality. We proceeded under the assumption that
the quality of patch p sampled from image I can not exceed
the quality of the image it was sampled from. We therefore
clamped the quality scores using the following relationship to
generate our final scores:

S(p) =

{
mos(I) if p was marked as high quality
0 otherwise

Each patch was presented to the network in all 4 orientations
and also mirrored horizontally and vertically. Our augmented
dataset thus consists of a total of 384,000 patches. All con-
volutional kernels in patchnet have a spatial dimension of
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Fig. 1. Architecture of patchnet.

Fig. 2. Patches marked as being indicative of high quality.

Fig. 3. Patches marked as being not indicative of high quality.

3×3 pixel, except for the first layer, where kernels of 5×5 pixel
were used. Max pooling was always performed with a kernel
size of 2×2 pixel. The output of the last convolutional layer
is flattened into a 1024-dimensional vector which is passed
through a fully connected network with 16, 8 and finally 1
node. All nonlinearities were rectified linear units, except for
the output node which employs a sigmoid function. We trained
a Keras [17] implementation of patchnet on a Nvidia K40
GPU in a little less than 12 hours. We used an Adam [18]
optimizer and a batch size of 64 patches per iteration.

V. INDICATOR MAP GENERATION

In accordance with our dual understanding of image quality,
we experimented with two second stage models to estimate
mean opinion scores of images solely based on local quality
information. It is nontrivial to separate subjectively perceived
quality from aesthetic aspects and personal or even cultural
preferences for specific content when judging an entire natural
image.

For a given image of width w and height h, we created
three local indicator maps of width w̃ = b(w−∆)/δc+1 and
height h̃ = b(w−∆)/δc+1 where ∆ = 64 is the edge length
of our patches and δ = 4 is the sub-sampling stride in both

horizontal and vertical directions, as shown in Fig. 4. The three
indicator maps are a quality map generated by patchnet, a
sharpness map generated by FISH [8] and a brightness map
that is generated by down-scaling a gray-scale version of the
input image.
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Fig. 4. Subsampling with ∆ = 64 pixel and δ = 4 pixel.

VI. INDICATOR MAP AGGREGATION

Recent publications in the image classification community
propose very deep convolutional neural networks with shortcut
connections as a mitigation for the common problems of
gradient decay and overfitting [19], [20]. We chose a headless
DenseNet-169 [9] architecture that was pretrained on the
ImageNet ILSVRC dataset [21] as a basis for MOS regression.
The final scores are generated from the output feature maps by
applying a single 1×1 kernel followed by global max pooling.
An overview of the structure is given in Figure 5.
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Fig. 5. Coarse architecture of the aggregation network.

Within a Dense Block, the results of a convolutional layer
are directly passed to each of the following convolutional



layers. In comparison to ResNets [19], the maps are not added
component-wise, but concatenated. Each block in DenseNet-
169 consists of sub-blocks of 1×1 convolutions, followed by
3×3 convolutions, with 32 kernels each. There are 6, 12, 32
and 32 of these sub-blocks in the model we utilize. To further
validate our approach, we split the remaining 9, 500 unused
images from KonIQ-10k into training, validation and test sets,
according to the usual 60/20/20 split. The training data set
was artificially augmented as follows: Each of the 5, 700
images was taken once unmodified and in three randomly
rotated versions between +10◦ and −10◦. After rotating,
we cropped the image to a rectangle of maximal valid size,
cutting off any undefined regions that were introduced by the
rotation. All training images were flipped both horizontally
and vertically. The resulting set of 68, 400 feature maps was
binned by resolution into 82 sets that were fed to the optimizer
iteratively. Each one was used for four consecutive optimiza-
tion steps to reduce the impact of the hardware bottleneck
of transferring data to the GPUs. We left the validation and
test sets, containing 1, 900 images each, unmodified to avoid
any influence rotating and flipping may have on the perceived
visual quality. We trained the model using the same optimizer
and batch-size as for patchnet.

VII. EXPERIMENTAL RESULTS

A. Averaging Patchnet Quality Maps

As shown in Table I, the baseline aggregation strategy of
taking the average of patchnet predictions already produces
results that correlate highly with global MOS scores. Note that
training was done solely on patches with individually clamped
mos scores. Those were sampled from a disjoint set of images
that were excluded from these experiments.

Relying solely on this rudimentary information, it was
unexpected that the correlation with the global MOS (0.67
SROCC) on the validation database is very close to that of
finely crafted features such as the best performing traditional
IQA method BRISQUE [22] (0.7). Moreover, the evaluation is
done at a disadvantage to our method, with BRISQUE having
been trained and tested on the same scoring database utilizing
features that aggregate global image characteristics.

TABLE I
CORRELATION COEFFICIENTS BETWEEN AVERAGE FEATURE MAP VALUES

AND MOS

Database Measure FISH patchnet gray-scale
KonIQ-10k SROCC 0.560 0.667 0.342

PLCC 0.513 0.573 0.354
Live in the Wild SROCC 0.500 0.512 0.213

PLCC 0.503 0.527 0.206

B. DenseNet Aggregation

We trained our model on the feature maps generated from
KonIQ-10k and evaluated its performance on a test set of
1900 pristine images. We have analyzed a variety of existing
methods on both of the largest existing annotated databases

KonIQ-10k and LIVE In the Wild. This enables to position the
performance of our local features in the broader context of
global IQA prediction. Two of the more recent global methods
[15], [23], having been trained and tested on the same KonIQ-
10k database, clearly out-perform our approach. This is not
surprising, considering the heavy restrictions we impose on
our model inputs. We however achieve close to state of the art
performance on KonIQ-10k and outperform all of the classical
and the naive patch-based models.

TABLE II
CORRELATION COEFFICIENTS FOR RECENT IQA METHODS.

KonIQ-10k LIVE In the Wild
SROCC PLCC SROCC PLCC

BIQI [24] 0.54 0.61 0.29 0.38
BLIINDS-II [11] 0.57 0.58 0.44 0.48
BRISQUE [22] 0.70 0.70 0.59 0.63
DIIVINE [10] 0.58 0.62 0.43 0.46
SSEQ [25] 0.59 0.61 0.45 0.50
BosICIP [6] 0.65 0.67 0.70 0.70
KangCNN [14] 0.63 0.67 0.71 0.73
DeepBIQ [15] 0.90 0.92 0.89 0.91
DeepRN [23] 0.92 0.95 0.91 0.93
Our Model 0.79 0.81 0.60 0.62

The correlation coefficients for KonIQ-10k are taken from [23] for BosICIP,
KangCNN, DeepBIQ, and DeepRN and the remaining methods are imple-
mented by ourselves.

VIII. CONCLUSION

We have only broken the ice on this research track towards
a better understanding of local, low-level technical quality. We
proposed a new approach to train a quality indicator working
on small image regions on a novel dataset of individually
annotated patches. Patchnet was shown to correlate highly
with mean opinion scores on a large and authentic in-the-
wild dataset of natural images. The amount of information
presented to the second-stage global MOS predictor is sig-
nificantly smaller in comparison to other existing methods.
The spatial size of the feature maps is roughly 6.25% of the
input image. Still, the performance of our model is close to
the state of the art and suggests that stacking feature maps is
a promising direction in aggregating local quality indicators.
Deliberately trying to disregard higher-level features to avoid
influences based on content and aestethic aspects found in
images is a new direction within the domain of IQA and
against the general trend of just applying deeper networks on
larger databases. Future work includes extending the database
on which we trained patchnet both regarding the number of
patches as well as the number of votes on each patch to remove
potential bias. As an alternative alley, one could choose to
combine the approach of a content-aware global predictor such
as DeepRN [23] with a larger, non-subsampled quality map
generated by our local indicator. We expect benefits regarding
the required training time if a local precursor already indicates
regions of high quality, which should help a content-aware
model to identify relevant concepts.



IX. EXAMPLE IMAGES

Here, we list examples of images and their feature map
representations to convey a feel for the indicators’ behaviour
in different scenarios.

Fig. 6. Image with highest SROCC (0.97) between FISH and patchnet
maps from KIQ10k. The original image on top with the FISH, patchnet
and gray-scale maps below (from left to right).

Fig. 7. Image with lowest SROCC (−0.55) between FISH and patchnet
maps from KIQ10k. The original image on top with the FISH, patchnet
and gray-scale maps below (from left to right).
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Fig. 8. Example image contrasting the difference in range-normalized
responsiveness between FISH and patchnet: Mind the clearer distinction
of foreground and background between FISH (left) and patchnet (middle).
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